ZZanolli M., Oporto J.I., Verdaguer J.I., López J.P., Zacharías S., Romero P., Ossandón D., Denk O., Acuña O., López J.M., Stevenson R., Álamos B., Iturriaga H. Genetic testing for inherited ocular conditions in a developing country. // Ophthalmic Genetics. 2020 Mar 6.
DOI: 10.1080/13816810.2020.1734944
https://www.ncbi.nlm.nih.gov/pubmed/32141364Zeng C., Cao W., Zhao T., Li L., Hou L. Hope level and associated factors among parents of retinoblastoma patients during COVID-19 pandemic: a cross-sectional study. BMC Psychiatry. 2021 Aug 6;21(1):391.
doi: 10.1186/s12888-021-03401-0
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8343352/Zeng C., Han M., Fan J. et al. Anemia and Bone Marrow Suppression After Intra-Arterial Chemotherapy in Children With Retinoblastoma: A Retrospective Analysis. Frontiers in oncology. 2022-08-13;12(12):848877
doi: 10.3389/fonc.2022.848877
Zeng Q., Wang S., Chen L. et al. Transcriptome analysis reveals molecularly distinct subtypes in retinoblastoma. Scientific reports. 2023-11-21;13(1):16475
doi: 10.1038/s41598-023-42253-4
Zeng Q., Wang S., Tan J., Chen L., Wang J. The methylation level of TFAP2A is a potential diagnostic biomarker for retinoblastoma: an analytical validation study. PeerJ. 2021 Mar 2;9:e10830.
doi: 10.7717/peerj.10830
https://pubmed.ncbi.nlm.nih.gov/33717678/Zeng Y., He T., Liu J., Li Z., Xie F., Chen C. Xing Y. Bioinformatics analysis of multi-omics data identifying molecular biomarker candidates and epigenetically regulatory targets associated with retinoblastoma. Medicine. 2020 Nov 20;99(47):e23314.
doi: 10.1097/MD.0000000000023314
https://pubmed.ncbi.nlm.nih.gov/33217867/Zhang C., Feng Z.X., Li L., Solarte C.E., Ma X. Retinoblastoma in a child with tuberous sclerosis complex. Canadian journal of ophthalmology. Journal canadien d'ophtalmologie. 2020 Aug 18
doi: 10.1016/j.jcjo.2020.05.014
https://pubmed.ncbi.nlm.nih.gov/32822658/Zhang C., Wu S. MicroRNA -378a-3p Restrains the Proliferation of Retinoblastoma Cells but Promotes Apoptosis of Retinoblastoma Cells via Inhibition of FOXG1.
Investigative ophthalmology & visual science. 2020 May 11
DOI:
10.1167/iovs.61.5.31https://pubmed.ncbi.nlm.nih.gov/32428232/?from_term=retinoblastoma&from_sort=date&from_page=2&from_pos=7Zhang G., Yang W., Li D., Li X., Huang J., Huang R., Luo J. lncRNA FEZF1‑AS1 promotes migration, invasion and epithelial‑mesenchymal transition of retinoblastoma cells by targeting miR‑1236‑3p. Molecular medicine reports. 2020 Sep 2
doi: 10.3892/mmr.2020.11478
https://pubmed.ncbi.nlm.nih.gov/32901841/Zhang H., Konjusha D., Rafati N. et al. Inhibition of high level E2F in a RB1 proficient MYCN overexpressing chicken retinoblastoma model normalizes neoplastic behaviour. Cellular oncology (Dordrecht). 2023-08-22
doi: 10.1007/s13402-023-00863-0
Zhang H., Qiu X., Song Z., Lan L., Ren X., Ye B. CircCUL2 suppresses retinoblastoma cells by regulating miR-214-5p/E2F2 Axis. Anticancer Drugs. 2021 Aug 11.
doi: 10.1097/CAD.0000000000001190
Zhang H., Qiu X., Song Z., Lan L., Ren X., Ye B. CircCUL2 suppresses retinoblastoma cells by regulating miR-214-5p/E2F2 Axis. Anticancer Drugs. 2022 Jan 1;33(1):e218-e227.
doi: 10.1097/CAD.0000000000001190
Zhang H., Yang X., Xu Y., Li H. KCNQ1OT1 regulates the retinoblastoma cell proliferation, migration and SIRT1/JNK signaling pathway by targeting miR-124/SP1 axis. Bioscience reports. 2020 Dec 21:BSR20201626.
doi: 10.1042/BSR20201626
https://pubmed.ncbi.nlm.nih.gov/33345272/Zhang H., Zhang P., Long C., Ma X., Huang H., Kuang X., Du H., Tang H., Ling X., Ning J., Liu H., Deng X., Zou Y., Wang R., Cheng H., Lin S., Zhang Q., Yan J., Shen H. m(6)A methyltransferase METTL3 promotes retinoblastoma progression via PI3K/AKT/mTOR pathway. Journal of cellular and molecular medicine. 2020 Oct 8.
doi: 10.1111/jcmm.15736
https://pubmed.ncbi.nlm.nih.gov/33090698/
Zhang J., Liu Z.N., Deng G.H. Anticancer Activity of New Na(I) Complex on Retinoblastoma Cells via Inhibiting PI3K/AKT/mTOR Pathway. J Oncol. 2021 Nov 18;2021:9403333.
doi: 10.1155/2021/9403333
Zhang L.J., Wang F., Qi P.Y., Zhou W.Y., Wang B. miR-513b-5p inhibits the proliferation and promotes apoptosis of retinoblastoma cells by targeting TRIB1. Open Med (Wars). 2021 Sep 9;16(1):1364-1371.
doi: 10.1515/med-2021-0343
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8423897/Zhang L., Wu J., Li Y., Jiang Y., Wang L., Chen Y., Lv Y., Zou Y., Ding X.
Circ_0000527 promotes the progression of retinoblastoma by regulating miR-646/LRP6 axis. Cancer cell international. 2020 Jul 10
doi: 10.1186/s12935-020-01396-4
https://pubmed.ncbi.nlm.nih.gov/32669977/https://cancerci.biomedcentral.com/articles/10.1186/s12935-020-01396-4Zhang M.G., Kuznetsoff J.N., Owens D.A. et al. Early Mechanisms of Chemoresistance in Retinoblastoma. Cancers. 2022-10-17;14(19)
doi: 10.3390/cancers14194966
Zhang Q., Zhong C., Duan S. The tumorigenic function of LINC00858 in cancer. Biomed Pharmacother. 2021 Nov;143:112235.
doi: 10.1016/j.biopha.2021.112235
Zhang R., Dong L., Li R. et al. Automatic retinoblastoma screening and surveillance using deep learning. British journal of cancer. 2023-08-09;129(3):466-474
doi: 10.1038/s41416-023-02320-z
Zhang R., Song Y.N., Duo X., Guo Z., Sun Y., Zhang Z., Lu Y., Miao B., Yang P.C., Nie G. Retinoblastoma cell-derived Twist protein promotes regulatory T-cell development. Cancer immunology, immunotherapy: CII. 2020 Oct 27.
doi: 10.1007/s00262-020-02744-z
https://pubmed.ncbi.nlm.nih.gov/33108472/Zhang S., Long J., Hu Y. Long noncoding RNA LINC00205 enhances the malignant characteristics of retinoblastoma by acting as a molecular sponge of microRNA-665 and consequently increasing HMGB1 expression. // Biochemical and Biophysical Research Communication. 2020 Mar 26.
DOI: 10.1016/j.bbrc.2020.03.083
https://pubmed.ncbi.nlm.nih.gov/32223925/?from_term=retinoblastoma&from_sort=date&from_pos=1Zhang S., Xu H., Li W. et al. MDM2 promotes cancer cell survival through regulating the expression of HIF-1α and pVHL in retinoblastoma. Pathology oncology research : POR. 2023-02-08;29(29):1610801
doi: 10.3389/pore.2023.1610801
Zhang T., Yang J., Gong F., Li L., Li A. Long non-coding RNA CASC9 promotes the progression of retinoblastoma via interacting with miR-145-5p. Cell Cycle. 2020 Aug 10.
doi: 10.1080/15384101.2020.1802813
https://pubmed.ncbi.nlm.nih.gov/32772636/Zhang X., Jiang Y., Cai Y. et al. Epigenetics research in eye diseases: a bibliometric analysis from 2000 to 2023. Clinical & experimental optometry. 2023-10-24:1-8
doi: 10.1080/08164622.2023.2261929
Zhang X., Jin ZB. et al. Reconstruct Human Retinoblastoma In Vitro. Journal of visualized experiments : JoVE. 2022-11-02(188)
doi: 10.3791/62629
Zhang X., Song L., Huang Y., Han S., Hou M., Li H. Downregulation of MST4 Underlies a Novel Inhibitory Role of MicroRNA Let-7a in the Progression of Retinoblastoma. Investigative ophthalmology & visual science. 2020 Jun 3
doi: 10.1167/iovs.61.6.28
https://pubmed.ncbi.nlm.nih.gov/32539131/Zhang Y., Dou X., Kong Q., Li Y., Zhou X. Circ_0075804 promotes the malignant behaviors of retinoblastoma cells by binding to miR-138-5p to induce PEG10 expression. Int Ophthalmol. 2021 Oct 11
doi: 10.1007/s10792-021-02067-7
Zhang Y., Duan S., Jang A., Mao L., Liu X., Huang G. JQ1, a selective inhibitor of BRD4, suppresses retinoblastoma cell growth by inducing cell cycle arrest and apoptosis. Experimental eye research. 2020 Oct 17
doi: 10.1016/j.exer.2020.108304
https://pubmed.ncbi.nlm.nih.gov/33080301/Zhang Y., Jing X., Li Z., Tian Q., Wang Q., Chen X. Investigation of the role of the miR17-92 cluster in BMP9-induced osteoblast lineage commitment. J Orthop Surg Res. 2021 Oct 30;16(1):652.
doi: 10.1186/s13018-021-02804-9
Zhang Y., Tang L. et al. Retinoblastoma in an older child with secondary glaucoma as the first clinical presenting symptom: A case report. World journal of clinical cases. 2022-09-28;10(24):8695-8702
doi: 10.12998/wjcc.v10.i24.8695
Zhang Y., Wang Y., Huang D., Ma J., Zhang W., Gu H., Zhou Y., Yi Y., Zhang P. Correlation between Family RB1 Gene Pathogenic Variant with Clinical Features and Prognosis of Retinoblastoma under 5 Years Old. Disease markers. 2021 Jul 12;2021:9981028. PMID: 34336010; PMCID: PMC8292087.
doi: 10.1155/2021/9981028
https://pubmed.ncbi.nlm.nih.gov/34336010/Zhang Y., Wang Y., Zhi T. et al. Clinical characteristics, treatment and prognosis of infants with retinoblastoma: a multicenter, 10-year retrospective analysis. BMC pediatrics. 2023-05-13;23(1):229
doi: 10.1186/s12887-023-03984-5
Zhang Y., Wang Y.Z., Shi J.T. et al. Clinical analysis of 2790 children with retinoblastoma: a single-center experience in China. World journal of pediatrics : WJP. 2023-10-21;19(12):1169-1180
doi: 10.1007/s12519-023-00719-5
Zhang Y., Wei W.B., Zhao J. et al. Spectrum and tissue distribution of RB1 pathogenic alleles in mosaic retinoblastoma patients. Ophthalmic genetics. 2022-08-08:1-11
doi: 10.1080/13816810.2022.2098985
Zhang Y., Zheng A. MiR-142-5p promotes retinoblastoma cell proliferation, migration and invasion by targeting PTEN. J Biochem. 2021 Oct 11;170(2):195-202.
doi: 10.1093/jb/mvaa121
Zhang Z., Xiao Y.S., Shen R., Jiang H.C., Tan L., Li R.Q., Yang X.H., Gu H.Y., He W.J., Ma J. Next generation sequencing of RB1gene for the molecular diagnosis of ethnic minority with retinoblastoma in Yunnan. BMC medical genetics. 2020 Nov 23;21(1):230.
doi: 10.1186/s12881-020-01150-7
https://pubmed.ncbi.nlm.nih.gov/33225895/
Zhao H.S., Wei W.B., Shi J.T. et al. [A retrospective analysis of 147 cases of orbital exenteration]. [Zhonghua yan ke za zhi] Chinese journal of ophthalmology. 2023-05-09;59(5):388-397
doi: 10.3760/cma.j.cn112142-20221107-00577
Zhao H., Wan J., Zhu Y. Carboplatin Inhibits the Progression of Retinoblastoma Through IncRNA XIST/miR-200a-3p/NRP1 Axis. Drug design, development and therapy. 2020 Aug 21
doi: 10.2147/DDDT.S256813
https://pubmed.ncbi.nlm.nih.gov/32904674/
Zhao J., Feng Z., Gallie B.L. Natural History of Untreated Retinoblastoma. Cancers (Basel). 2021 Jul 21;13(15):3646.
doi: 10.3390/cancers13153646
Zhao J., Feng Z., Leung G., Gallie B.L. Retinoblastoma Survival Following Primary Enucleation by AJCC Staging. Cancers (Basel). 2021 Dec 13;13(24):6240.
doi: 10.3390/cancers13246240
Zhao J., Li Q., Feng Z.X., Zhang J., Wu S., Jin L., Gallie B.L. Tylectomy Safety in Salvage of Eyes with Retinoblastoma. Cancers (Basel). 2021 Nov 22;13(22):5862.
doi: 10.3390/cancers13225862
Zhao N.O., Pak D., El-Hadad C., Debnam J.M., Ning J., Esmaeli B. Characteristics and Survival Outcomes of Second Primary Cancers in Long-term Retinoblastoma Survivors. Asia-Pacific journal of ophthalmology. 2021 Jan 19.
doi: 10.1097/APO.0000000000000361
https://pubmed.ncbi.nlm.nih.gov/33481394/
Zhao N., Zhou L., Lu Q., Wang S., Sun Y., Ding Y., Liu M., He H., Lang T. SOX2 maintains the stemness of retinoblastoma stem-like cells through Hippo/YAP signaling pathway. Exp Eye Res. 2021 Dec 7;214:108887.
doi: 10.1016/j.exer.2021.108887
Zhao X.M., Li Y.B., Sun P., Pu Y.D., Shan M.J., Zhang Y.M. Bioinformatics analysis of key biomarkers for retinoblastoma. The Journal of international medical research. 2021 Jun;49(6):3000605211022210.
doi: 10.1177/03000605211022210
https://pubmed.ncbi.nlm.nih.gov/34187205/
Zhao Y., Cheng Y., Qu Y. et al. The role of EZH2 as a potential therapeutic target in retinoblastoma. Experimental eye research. 2023-01-27;227(227):109389
doi: 10.1016/j.exer.2023.109389
Zhao Y, Wang Z, Gao M, Wang X, Feng H, Cui Y, Tian X. lncRNA MALAT1 regulated ATAD2 to facilitate retinoblastoma progression via miR-655-3p. Open Med (Wars). 2021 Jun 24;16(1):931-943.
doi: 10.1515/med-2021-0290
Zheng T., Chen W., Wang X., Cai W., Wu F., Lin C. Circular RNA circ-FAM158A promotes retinoblastoma progression by regulating miR-138-5p/SLC7A5 axis. Experimental eye research. 2021 Jun 5:108650.
doi: 10.1016/j.exer.2021.108650
https://pubmed.ncbi.nlm.nih.gov/34102206/Zheng T., Chen W., Wang X., Cai W., Wu F., Lin C. Circular RNA circ-FAM158A promotes retinoblastoma progression by regulating miR-138-5p/SLC7A5 axis. Exp Eye Res. 2021 Oct;211:108650.
doi: 10.1016/j.exer.2021.108650
Zheng Q., Zhu Q., Li C., Hao S., Li J., Yu X., Qi D., Pan Y. Sinomenine can inhibit the growth and invasion ability of retinoblastoma cell through regulating PI3k/AKT signaling pathway. Biological & pharmaceutical bulletin. 2020 Aug 4.
doi: 10.1248/bpb.b20-00387
https://pubmed.ncbi.nlm.nih.gov/32759601/Zheng W., Li X., Zou H. et al. Dual-Target Multifunctional Superparamagnetic Cationic Nanoliposomes for Multimodal Imaging-Guided Synergistic Photothermal/Photodynamic Therapy of Retinoblastoma. International journal of nanomedicine. 2022-08-05;17(17):3217-3237
doi: 10.2147/IJN.S364264
Zheng Y., Froehler M.T., Friedman D., Daniels A. Intra-arterial chemotherapy (IAC) as primary treatment for cavitary retinoblastoma: Excellent response in 8 tumors. Ophthalmology. Retina. 2020 Aug 24
doi: 10.1016/j.oret.2020.08.011
https://pubmed.ncbi.nlm.nih.gov/32853834/Zheng Y., Froehler M.T., Friedman D.L., Daniels A.B. Intra-arterial Chemotherapy as Primary Treatment for Cavitary Retinoblastoma: Excellent Response in Eight Tumors. Ophthalmology Retina. 2021 May;5(5):479-485.
doi: 10.1016/j.oret.2020.08.011
https://pubmed.ncbi.nlm.nih.gov/32853834/Zheng Q., Zhu Q., Li C., Hao S., Li J., Yu X., Qi D., Pan Y. microRNA-144 functions as a diagnostic and prognostic marker for retinoblastoma. Clinics. 2020 Aug 19.
doi: 10.6061/clinics/2020/e1804
https://pubmed.ncbi.nlm.nih.gov/32844953/Zhou C., Wen X., Ding Y., Ding J., Jin M., Liu Z., Wang S., Han M., Yuan H., Xiao Y., Wu L., Wang J., Li Y., Yu J., Wen Y., Ye J., Liu R., Chen Z., Xue S., Lu W., Liao H., Cui J., Zhu D., Lu F., Tang S., Wu Y., Yangkyi T., Zhang G., Wubuli M., Guo H., Wang X., He Y., Sheng X., Wang Q., Luo Y., Fan J., Qi J., Yu Z., Tan J., Liang J., Sun X., Jin L., Yang X., Zhang J., Ji X., Zhao J., Jia R., Fan X. Eye-preserving therapies for advanced retinoblastoma: a multicenter cohort of 1678 patients in China. Ophthalmology. 2021 Sep 15:S0161-6420(21)00683-7.
doi: 10.1016/j.ophtha.2021.09.002
Zhou L., Chen L., Chen S. et al. Highly Efficient Photodynamic Therapy with Mitochondria-Targeting Aggregation-induced Emission Photosensitizer for Retinoblastoma. Advanced healthcare materials. 2022-10-22:e2202219
doi: 10.1002/adhm.202202219
Zhou L., Ng D.S., Yam J.C., Chen L.J., Tham C.C., Pang C.P., Chu W.K. Post-translational modifications on the retinoblastoma protein. J Biomed Sci. 2022 Jun 1;29(1):33. PMID: 35650644; PMCID: PMC9161509.
doi: 10.1186/s12929-022-00818-x
Zhou L., Zhu X.H., Zhang K., Hu R., Myers F. Case Report: Adult Retinoblastoma Progression in 19 Months. Optometry and vision science: official publication of the American Academy of Optometry. 2020 Oct 26.
doi: 10.1097/OPX.0000000000001602
https://pubmed.ncbi.nlm.nih.gov/33110028/Zhou L., Zhu X.H., Zhang K., Hu R., Myers F. Case Report: Adult Retinoblastoma Progression in 19 Months. Optometry and vision science : official publication of the American Academy of Optometry. 2020 Nov;97(11):1010-1016.
doi: 10.1097/OPX.0000000000001602
https://pubmed.ncbi.nlm.nih.gov/33110028/Zhou M., Wen X., Jia S., Han Y., He X., Han M., Xu W., Fan J., Jia R., Fan X. Risk factors for ophthalmic artery stenosis and occlusion in patients with retinoblastoma treated with intra-arterial chemotherapy. The British journal of ophthalmology. 26 May. 2021
doi:10.1136/bjophthalmol-2021-319118
https://pubmed.ncbi.nlm.nih.gov/34039564/Zhou N., Yang L., Xu X. et al. Retinoblastoma in Adults: Clinical Features, Gene Mutations and Treatment Outcomes: A Study of Six Cases. Frontiers in oncology. 2022-08-20;12(12):835965
doi: 10.3389/fonc.2022.835965
Zhou S., Lu S., Guo S., Zhao L., Han Z., Li Z. Protective Effect of Ginsenoside Rb1 Nanoparticles Against Contrast-Induced Nephropathy by Inhibiting High Mobility Group Box 1 Gene/Toll-Like Receptor 4/NF-κB Signaling Pathway. J Biomed Nanotechnol. 2021 Oct 1;17(10):2085-2098.
doi: 10.1166/jbn.2021.3163
Zhou W., Guan W., Zhou Y., Rao Y., Ji X., Li J. Weighted genes associated with the progression of retinoblastoma: Evidence from bioinformatic analysis. Exp Eye Res. 2021 Oct;211:108730.
doi: 10.1016/j.exer.2021.108730
Zhou Y., Cai S., Jin M., Jiang C., Xu N., Duan C., Peng X., Zhao J., Ma X. Economic burden for retinoblastoma patients in China. Journal of medical economics. 2020 Oct 27:1-5.
doi: 10.1080/13696998.2020.1831518
https://pubmed.ncbi.nlm.nih.gov/33000977/Zhou Z., Jiang H., Xia J., Zhang J. Comparison of the therapeutic effects of lobaplatin and carboplatin on retinoblastoma in vitro and in vivo. International journal of oncology. 2020 Jun 22.
doi: 10.3892/ijo.2020.5085
https://pubmed.ncbi.nlm.nih.gov/32582992/Zhuang H., Xu Y.N., Zheng H.H., Huan Y.R., Zheng N.X., Lin L., Zhang W.Z., Xu W. Carboplatin-loaded surface modified-PLGA nanoparticles confer sustained inhibitory effect against retinoblastoma cell in vitro. Arq Bras Oftalmol. 2022 Feb 14:S0004-27492022005002204. Epub ahead of print. PMID: 35170632.
doi: 10.5935/0004-2749.20220075
Zhu X.Y., Li J., Guan W.B., Chen C.L., Ji X.D., Zhao P.Q. Pathologic comparisons of enucleated eyes with retinoblastoma after superselective ophthalmic arterial chemotherapy with or without intravenous chemotherapy. International journal of ophthalmology. 2020 Nov 18;13(11):1794-1799.
doi: 10.18240/ijo.2020.11.17
https://pubmed.ncbi.nlm.nih.gov/33215012/Zhu X., Li Z., Liu J. et al. MRI features for prediction of the intravenous chemotherapy effect in patients with retinoblastoma. Clinical radiology. 2023-10-12;78(11):e864-e871
doi: 10.1016/j.crad.2023.07.013
Zhu X., Yu M., Wang K., Zou W., Zhu L. FoxM1 affects adhesive, migratory, and invasive abilities of human retinoblastoma Y-79 cells by targeting matrix metalloproteinase 2. // Acta Biochimica et Biophysica Sinica. 2020 Mar 10.
DOI: 10.1093/abbs/gmz160
https://www.ncbi.nlm.nih.gov/pubmed/32152631Zhu Y., Hao F. Knockdown of long non‑coding RNA HCP5 suppresses the malignant behavior of retinoblastoma by sponging miR‑3619‑5p to target HDAC9. International journal of molecular medicine. 2021 May;47(5):74.
doi: 10.3892/ijmm.2021.4907
https://pubmed.ncbi.nlm.nih.gov/33693951/Zluhan-Martínez E., Pérez-Koldenkova V., Ponce-Castañeda M.V., Sánchez M.P., García-Ponce B., Miguel-Hernández S., Álvarez-Buylla E.R., Garay-Arroyo A. Beyond What Your Retina Can See: Similarities of Retinoblastoma Function between Plants and Animals, from Developmental Processes to Epigenetic Regulation. International journal of molecular sciences. 2020 Jul 12
doi: 10.3390/ijms21144925
https://pubmed.ncbi.nlm.nih.gov/32664691/Zocchi L., Wu S.C., Benavente C.A. Heavenly HELLS? A potential new therapeutic target for retinoblastoma. Oncoscience. 2020 May 1.
DOI:
10.18632/oncoscience.502https://pubmed.ncbi.nlm.nih.gov/32426419/?from_term=retinoblastoma&from_sort=date&from_page=2&from_pos=10Zomor El. H., Nour R., Saad A., Taha H., Shelil AE., Aleieldin A., Saad Zaghloul M., Alfaar AS. Unilateral retinoblastoma; natural history and an age-based protocol in 248 patients. Eye (Lond). 2021 Sep;35(9):2564-2572. doi: 10.1038/s41433-020-01275-2. Epub 2020 Nov 13.
PMID: 33188294; PMCID: PMC8377076
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8377076/ Zou Y., Li J., Hua P., Liang T., Ji X., Zhao P. Spectrum of germline mutations in RB1 in Chinese patients with retinoblastoma: Application of targeted next-generation sequencing.
Molecular vision. 2021 Jan 6;27:1-16.
https://pubmed.ncbi.nlm.nih.gov/33456302/Zschoche M., Skosyrski S., Babst N., Ranjbar M., Rommel F., Kurz M., Tura A., Joachim S.C., Kociok N., Kakkassey V. Islet Co-Expression of CD133 and ABCB5 in Human Retinoblastoma Specimens. Klin Monbl Augenheilkd. 2021 Sep 27. English.
doi: 10.1055/a-1525-2588
Zugbi S., Aschero R., Ganiewich D. et al. Establishment and Comprehensive Characterization of a Novel Preclinical Platform of Metastatic Retinoblastoma for Therapeutic Developments. Investigative ophthalmology & visual science. 2023-12-24;64(15):27
doi: 10.1167/iovs.64.15.27
Zugbi S., Ganiewich D., Bhattacharyya A., Aschero R., Ottaviani D., Sampor C., Cafferata E.G. etc. Clinical, Genomic, and Pharmacological Study of MYCN-Amplified RB1 Wild-Type Metastatic Retinoblastoma. Cancers. 2020 Sep 22
doi: 10.3390/cancers12092714
https://pubmed.ncbi.nlm.nih.gov/32971811/Zuo X., Fu C., Xie J., Wang X., Yan Z. Hsa_circ_0000527 Downregulation Suppresses the Development of Retinoblastoma by Modulating the miR-27a-3p/HDAC9 Pathway. Curr Eye Res. 2021 Nov 25:1-12.
doi: 10.1080/02713683.2021.1925697